On d-dimensional d-semimetrics and simplex-type inequalities for high-dimensional sine functions
نویسندگان
چکیده
We show that high-dimensional analogues of the sine function (more precisely, the d-dimensional polar sine and the d-th root of the d-dimensional hypersine) satisfy a simplex-type inequality in a real preHilbert space H. Adopting the language of Deza and Rosenberg, we say that these d-dimensional sine functions are d-semimetrics. We also establish geometric identities for both the d-dimensional polar sine and the d-dimensional hypersine. We then show that when d = 1 the underlying functional equation of the corresponding identity characterizes a generalized sine function. Finally, we show that the d-dimensional polar sine satisfies a relaxed simplex inequality of two controlling terms “with high probability”.
منابع مشابه
High-Dimensional Menger-Type Curvatures - Part I: Geometric Multipoles and Multiscale Inequalities
We define discrete Menger-type curvature of d+2 points in a real separable Hilbert space H by an appropriate scaling of the squared volume of the corresponding (d+1)-simplex. We then form a continuous curvature of an Ahlfors regular measure μ on H by integrating the discrete curvature according to products of μ (or its restriction to balls). The essence of this work, which continues in a subseq...
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملFractional Hermite-Hadamard type inequalities for n-times log-convex functions
In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 156 شماره
صفحات -
تاریخ انتشار 2009